skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mao, Jiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graham, Lyle J (Ed.)
    Sensory neurons continually adapt their response characteristics according to recent stimulus history. However, it is unclear how such a reactive process can benefit the organism. Here, we test the hypothesis that adaptation actually acts proactively in the sense that it optimally adjusts sensory encoding for future stimuli. We first quantified human subjects’ ability to discriminate visual orientation under different adaptation conditions. Using an information theoretic analysis, we found that adaptation leads to a reallocation of coding resources such that encoding accuracy peaks at the mean orientation of the adaptor while total coding capacity remains constant. We then asked whether this characteristic change in encoding accuracy is predicted by the temporal statistics of natural visual input. Analyzing the retinal input of freely behaving human subjects showed that the distribution of local visual orientations in the retinal input stream indeed peaks at the mean orientation of the preceding input history (i.e., the adaptor). We further tested our hypothesis by analyzing the internal sensory representations of a recurrent neural network trained to predict the next frame of natural scene videos (PredNet). Simulating our human adaptation experiment with PredNet, we found that the network exhibited the same change in encoding accuracy as observed in human subjects. Taken together, our results suggest that adaptation-induced changes in encoding accuracy prepare the visual system for future stimuli. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026